
CloudI
Erlang Factory SF Bay Area, California, USA

March 26, 2010

Michael Truog
mjtruog@gmail.com

A Cloud as an InterfaceA Cloud as an Interface
EXPANDED

• Work Title == “Work Module.Tag”
• Data Title == “Data Module.Database”
• Worker – a work thread within the

cloud_worker_port operating system
process connected to Cloudi

• cnode – Erlang node implemented in C
• Erlang port – operating system process

spawned by the Erlang VM

Cloudi Terminology

1. What is Cloudi?

2. Why Use Cloudi?

3. Where Is Cloudi Used?

4. How To Use Cloudi

5. The Future

Cloudi Topics

1. Private Cloud Computing Framework

2. Fault-tolerant Work Processing

3. Dynamic Load Balancing and Scheduling

4. Ordered Work Input/Output

5. Distributed Execution of C/C++ Work

What is Cloudi?

� Provides an open-source cloud

− BSD License

� An alternative to paying for a black-box
commercial cloud

− Internal processing is secure processing

� Creates a stable distributed processing
environment from any available Linux
machines

A Private Cloud Computing
Framework

� Erlang/OTP coordinates all work allocation,
execution, and work data flow

� Any crash of C/C++ code is handled

− Any signals, including uncatchable signals

� Uses Erlang Port processes subscribing to
the cloud as Erlang C Nodes

− Fault-tolerance overhead (“trip1”) averages
0.129 ms/task locally and 0.334 ms/task
remotely (http://cloudi.org/latency/latency.html)

Fault-tolerant Work Processing

Fault-tolerant Work Processing (cont.)

Database
A

1..N Erlang Port to C/C++
Connected as C Node

1..M Task Threads

Erlang
Port

Control
Functions

Local
C Node
ASN.1
Task

Request
and

Response

Database
Z

o
o
o

Slave Cloudi
Node (Erlang VM)

1..N Erlang Port to C/C++
Connected as C Node

Erlang
Port

Control
Functions

Remote
C Node
ASN.1
Task

Request
and

Response

Machine A Machine B

1..M Task Threads

Master Cloudi
Node (Erlang VM)

� Worker threads are ideally stateless and
form a pool of workers in the cloud

� Cloudi adjusts the task size based on the
task execution time that is requested

− Convergence is slow to avoid problems with
unstable work processing

� Cloudi verifies that work is loaded:

− During work allocation

− After node reconnection

Dynamic Load Balancing and
Scheduling

� The Erlang work module enforces an order
on the work task input

� Cloudi maintains the task input order when
collecting output so data is stored in the
same order

� Work processing is paused when
excessive data accumulation occurs

Ordered Work Input/Output

Distributed Execution of C/C++ Work

� One do_work function is required in a dynamic
library for the C/C++ work

− Loaded when Cloudi requests it

� Six Erlang functions within the work module provide
work task specification

− The functions define the task size as a float value in
the range (0..1) and task data as binary data

� Any Erlang data module can handle output

− Currently the supported databases are PostgreSQL,
MySQL, memcached, Tokyo Tyrant, and CouchDB

� Computationally intensive data processing

− Text processing, numerical computations,
data transformations, and iterative methods

� Computation is decoupled from external
access to the results

− Separating the computational processes from
the resulting data helps to isolate complexity
and supports fault-tolerant services

Why Use Cloudi?

� A management application can
facilitate failover between master
nodes

− Separate epmd processes keep the
distributed Erlang nodes separate

� Instance failover can currently be
accomplished through manual
usage of the cloud_api module

− Not recommended for critical tasks

Where Is Cloudi Used?

Primary
Node 1

Secondary
Node 2

Node 3

Node 4 Node 5

Node 6

Controller

� Scalability can be achieved with a
combination of NoSQL and SQL databases
that are clustered

Where Is Cloudi Used? (cont.)

WAN

View

Model
(Database Cluster)

Primary Cloudi Instance

Secondary Cloudi Instance

o
o
o

Cloudi
Management
Application

(Not Yet
Implemented)

1. Cloudi Compilation

2. The Erlang Work Module

3. The C/C++ Work Library

4. Cloudi Configuration

5. Cloudi API

How To Use Cloudi

� Compiles g++/gcc locally for all dependencies
but takes a lot of time and memory

− More than 2 hours of compilation time

− Approximately 3 gigabytes of hard disk storage

− Only done the first time Cloudi is compiled

� Keeps the Cloudi alpha release maintainable and
consistent for diagnosing or reporting problems

Cloudi Compilation
make[5]: Leaving directory `/home/user/cloudi-0.0.9 /install/g++/releases/gcc-4.4.2/x86_64-unknown-linu x-gnu/libgomp'
make[4]: Leaving directory `/home/user/cloudi-0.0.9 /install/g++/releases/gcc-4.4.2/x86_64-unknown-linu x-gnu/libgomp'
make[3]: Leaving directory `/home/user/cloudi-0.0.9 /install/g++/releases/gcc-4.4.2/x86_64-unknown-linu x-gnu/libgomp'
make[2]: Leaving directory `/home/user/cloudi-0.0.9 /install/g++/releases/gcc-4.4.2'
make[1]: Leaving directory `/home/user/cloudi-0.0.9 /install/g++/releases/gcc-4.4.2'
##
g++ NOW BUILT, RERUN THE MAKEFILE TO COMPILE
##
make: *** [/home/user/cloudi-0.0.9/src/lib/g++/rele ases/gcc-4.4.2_install/bin/g++] Error 1
user@machine$

� Uses the cloud_work_interface behavior

− handle_get_task_time_target/0 controls the
smallest interval of job output to the database

− handle_get_initial_task_size/0 provides the
smallest possible task size for the algorithm

− handle_get_task/3 takes the task size and returns
the binary task data with the task input database
queries that must be processed by the work library

− start_link/2 takes job configuration arguments
that define the scope of several tasks

The Erlang Work Module

� The work module must dynamically adjust
the task data in a meaningful way to avoid
overloading the database(s)

� Task data must be less than 4 megabytes
� The work module must use the same name

as the corresponding C/C++ work library
� A “work title” identifier is the work module

name with a unique “.tag” suffix that
identifies the type of tasks being processed

The Erlang Work Module (cont.)

� Uses the cloud_work_interface
header file to define the do_work function

− Provides the worker thread id for caching with
global work library data

− The “stop” boolean input parameter changes
to make the running task abort its computation

− A vector of output database queries stores the
result of a do_work function evaluation which
was directly influenced by the task data input
parameter created in the Erlang work module

The C/C++ Work Library

� Any data repositories must be configured
with a “data title” so that output queries are
not discarded as irrelevant

� Cloudi depends on a locally compiled
version of g++/gcc so that work executes in
a consistent environment

� The execution time of the do_work
function will adjust for tasks in an attempt
to converge on the task time target

The C/C++ Work Library (cont.)

� Machines specification

− Defines the Cloudi nodes for an instance

− Specifies the number of operating system
processes to use for executing any work and
how many threads to allow per process

− Uses boost::thread to provide threading which
encapsulates the pthread API on Linux

− Specifies port numbers used for each
operating system process

Cloudi Configuration: Machines

� Data repository specification

− Database specific settings where a “data title”
is a data module name with a “.database”
suffix to uniquely identify data routing

− Startup requires that all databases specified
are online

− The master node for the active instance will
die if the database connection is terminated or
experiences a timeout

Cloudi Configuration: Data

� Jobs specification
− Every entry must have a unique “work title”,

i.e., a work module with “.tag” suffix
− Includes a request for a number of workers or

uses the ‘all’ atom to use all available
− Either specifies the atom ‘threads’,

‘no_threads’, or an integer that represents
threads per operating system process

− Provides job parameters as arguments to the
work module start_link/2 function

Cloudi Configuration: Jobs

� Provides a dynamic configuration for
machines, data repositories, and jobs

� Uses the same specification format as
used in the cloud.conf configuration file

� Does not block the removal of a data
repository that running jobs depend on

� Will be the interface for an external
management application

� Exists as the cloud_api Erlang module

Cloudi API

� The management application needs to be
created to simplify Cloudi instance failover

� More databases will be supported

� More fault-tolerance testing

� Download Cloudi @ http://cloudi.org/

− Version 0.0.9 alpha is now available!

The Future

Questions?

