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• Work Title == “Work Module.Tag”
• Data Title == “Data Module.Database”
• Worker – a work thread within the 

cloud_worker_port operating system 
process connected to Cloudi

• cnode – Erlang node implemented in C
• Erlang port – operating system process 

spawned by the Erlang VM

Cloudi Terminology
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What is Cloudi?



� Provides an open-source cloud

− BSD License

� An alternative to paying for a black-box 
commercial cloud

− Internal processing is secure processing

� Creates a stable distributed processing 
environment from any available Linux 
machines

A Private Cloud Computing 
Framework



� Erlang/OTP coordinates all work allocation, 
execution, and work data flow

� Any crash of C/C++ code is handled

− Any signals, including uncatchable signals

� Uses Erlang Port processes subscribing to 
the cloud as Erlang C Nodes

− Fault-tolerance overhead (“trip1”) averages 
0.129 ms/task locally and 0.334 ms/task 
remotely (http://cloudi.org/latency/latency.html)

Fault-tolerant Work Processing



Fault-tolerant Work Processing (cont.)

Database
A

1..N Erlang Port to C/C++
Connected as C Node

1..M Task Threads

Erlang
Port

Control
Functions

Local
C Node
ASN.1
Task

Request
and

Response

Database
Z

o
o
o

Slave Cloudi
Node (Erlang VM) 

1..N Erlang Port to C/C++
Connected as C Node

Erlang
Port

Control
Functions

Remote
C Node
ASN.1
Task

Request
and

Response

Machine A Machine B

1..M Task Threads

Master Cloudi
Node (Erlang VM) 



� Worker threads are ideally stateless and 
form a pool of workers in the cloud

� Cloudi adjusts the task size based on the 
task execution time that is requested

− Convergence is slow to avoid problems with 
unstable work processing

� Cloudi verifies that work is loaded:

− During work allocation

− After node reconnection

Dynamic Load Balancing and 
Scheduling



� The Erlang work module enforces an order 
on the work task input

� Cloudi maintains the task input order when 
collecting output so data is stored in the 
same order

� Work processing is paused when 
excessive data accumulation occurs

Ordered Work Input/Output



Distributed Execution of C/C++ Work

� One do_work function is required in a dynamic 
library for the C/C++ work

− Loaded when Cloudi requests it

� Six Erlang functions within the work module provide 
work task specification

− The functions define the task size as a float value in 
the range (0..1) and task data as binary data  

� Any Erlang data module can handle output

− Currently the supported databases are PostgreSQL, 
MySQL, memcached, Tokyo Tyrant, and CouchDB



� Computationally intensive data processing

− Text processing, numerical computations, 
data transformations, and iterative methods

� Computation is decoupled from external 
access to the results

− Separating the computational processes from 
the resulting data helps to isolate complexity 
and supports fault-tolerant services

Why Use Cloudi?



� A management application can 
facilitate failover between master 
nodes

− Separate epmd processes keep the 
distributed Erlang nodes separate

� Instance failover can currently be 
accomplished through manual 
usage of the cloud_api module

− Not recommended for critical tasks

Where Is Cloudi Used?
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Controller

� Scalability can be achieved with a 
combination of NoSQL and SQL databases 
that are clustered

Where Is Cloudi Used? (cont.)
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How To Use Cloudi



� Compiles g++/gcc locally for all dependencies 
but takes a lot of time and memory

− More than 2 hours of compilation time

− Approximately 3 gigabytes of hard disk storage

− Only done the first time Cloudi is compiled

� Keeps the Cloudi alpha release maintainable and 
consistent for diagnosing or reporting problems

Cloudi Compilation
make[5]: Leaving directory `/home/user/cloudi-0.0.9 /install/g++/releases/gcc-4.4.2/x86_64-unknown-linu x-gnu/libgomp'
make[4]: Leaving directory `/home/user/cloudi-0.0.9 /install/g++/releases/gcc-4.4.2/x86_64-unknown-linu x-gnu/libgomp'
make[3]: Leaving directory `/home/user/cloudi-0.0.9 /install/g++/releases/gcc-4.4.2/x86_64-unknown-linu x-gnu/libgomp'
make[2]: Leaving directory `/home/user/cloudi-0.0.9 /install/g++/releases/gcc-4.4.2'
make[1]: Leaving directory `/home/user/cloudi-0.0.9 /install/g++/releases/gcc-4.4.2'
################################################
# g++ NOW BUILT, RERUN THE MAKEFILE TO COMPILE #
################################################
make: *** [/home/user/cloudi-0.0.9/src/lib/g++/rele ases/gcc-4.4.2_install/bin/g++] Error 1
user@machine$ 



� Uses the cloud_work_interface behavior

− handle_get_task_time_target/0 controls the 
smallest interval of job output to the database

− handle_get_initial_task_size/0 provides the 
smallest possible task size for the algorithm

− handle_get_task/3 takes the task size and returns 
the binary task data with the task input database 
queries that must be processed by the work library

− start_link/2 takes job configuration arguments 
that define the scope of several tasks

The Erlang Work Module



� The work module must dynamically adjust 
the task data in a meaningful way to avoid 
overloading the database(s)

� Task data must be less than 4 megabytes
� The work module must use the same name 

as the corresponding C/C++ work library
� A “work title” identifier is the work module 

name with a unique “.tag” suffix that 
identifies the type of tasks being processed

The Erlang Work Module (cont.)



� Uses the cloud_work_interface
header file to define the do_work function

− Provides the worker thread id for caching with 
global work library data

− The “stop” boolean input parameter changes 
to make the running task abort its computation

− A vector of output database queries stores the 
result of a do_work function evaluation which 
was directly influenced by the task data input 
parameter created in the Erlang work module

The C/C++ Work Library



� Any data repositories must be configured 
with a “data title” so that output queries are 
not discarded as irrelevant

� Cloudi depends on a locally compiled 
version of g++/gcc so that work executes in 
a consistent environment

� The execution time of the do_work 
function will adjust for tasks in an attempt 
to converge on the task time target

The C/C++ Work Library (cont.)



� Machines specification

− Defines the Cloudi nodes for an instance

− Specifies the number of operating system 
processes to use for executing any work and 
how many threads to allow per process

− Uses boost::thread to provide threading which 
encapsulates the pthread API on Linux

− Specifies port numbers used for each 
operating system process

Cloudi Configuration: Machines



� Data repository specification

− Database specific settings where a “data title”
is a data module name with a “.database”
suffix to uniquely identify data routing

− Startup requires that all databases specified 
are online

− The master node for the active instance will 
die if the database connection is terminated or 
experiences a timeout

Cloudi Configuration: Data



� Jobs specification
− Every entry must have a unique “work title”, 

i.e., a work module with “.tag” suffix
− Includes a request for a number of workers or 

uses the ‘all’ atom to use all available
− Either specifies the atom ‘threads’, 

‘no_threads’, or an integer that represents 
threads per operating system process 

− Provides job parameters as arguments to the 
work module start_link/2 function

Cloudi Configuration: Jobs



� Provides a dynamic configuration for 
machines, data repositories, and jobs

� Uses the same specification format as 
used in the cloud.conf configuration file

� Does not block the removal of a data 
repository that running jobs depend on

� Will be the interface for an external 
management application

� Exists as the cloud_api Erlang module

Cloudi API



� The management application needs to be 
created to simplify Cloudi instance failover

� More databases will be supported

� More fault-tolerance testing

� Download Cloudi @ http://cloudi.org/

− Version 0.0.9 alpha is now available!

The Future



Questions?


