

A Cloud as an Interface

ErLounge, San Francisco CA USA
May 5th 2011

Amazon Web Services

● Fault Tolerance for an Instance
● Light-Weight Integration of Diverse Source

Code Grouped into Services
● Scalable Service Communication

A Cloud Computing
Software Solution

● Private Usage with Implicit Security
● Public Usage with Scalable Connection

Handling
● Extends the Erlang Process/Actor Model into

C/C++, Java, Python, Ruby, …
● Provides Dynamic Configuration
● Fault Tolerant Supervision of Supported

Programming Languages

Flexible Integration

● CloudI API
● HTTP
● ZeroMQ
● Databases

● CouchDB
● Memcached
● PostgreSQL
● MySQL
● TokyoTyrant

Control + Isolation

● CloudI Job API for Dynamic Configuration
● Access Control List (ACL) Configuration

Controls All Service Communication
● Services are Managed in the Same Way as

Child Processes of an Erlang OTP Supervisor

Where to Start

● http://cloudi.org/faq.html
● http://groups.google.com/group/cloudi-questions

http://cloudi.org/faq.html
http://groups.google.com/group/cloudi-questions

Code Reuse:
Erlang Trie Data Structure

● dict Module Interface Supported
● List of Integers (string) to any Type Mapping
● Lookup Performance Equivalent to the Process

Dictionary (often the fastest Erlang data structure)
● Useful for String Lookups that are both more

Efficient and more Scalable than ETS
● Used in CloudI's list_pg.erl and list_pg_data.erl to

Provide a more Scalable pg2 Module
● https://github.com/okeuday/trie

https://github.com/okeuday/trie

Code Reuse:
Erlang Native UUID Generation

● UUID Versions 1, 3, 4, and 5 Implemented
● Version 1 Generation is Unique to an Erlang pid

and Distributed Erlang Node
● Version 1 is Used to Uniquely Identify CloudI

Service Messages
● https://github.com/okeuday/uuid

https://github.com/okeuday/uuid

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

