

A Cloud as an Interface

ErLounge, Vancouver BC
June 2nd 2011

Michael Truog
mjtruog@gmail.com

to All Your Source Code!

What Is CloudI?

● A flexible application server that supports:
● Many programming languages
● Many messaging buses
● Many databases
● Scalable process management
● Fault-tolerance with process isolation

● A Private Cloud Computing Solution
● A Scalable Server for Public Deployment of

Online Services

Why Use CloudI?

● To make source code more scalable
● To manage unstable source code that offers

critical functionality
● Provide a method to migrate away from a

dependency on unstable source code

● To reuse source code from diverse
programming languages

● To simplify development with a flexible
integration framework

What Is CloudI For?

● Event Handling
● Websites, Games, ...

● Data Processing
● Text processing, numerical computations, …

● System Integration
● Data routing, access control, ...

How To Develop A CloudI Service

● The CloudI API with:
Ruby, Python, C/C++, Java or Erlang
● Service Messaging:

send_sync, send_async, recv_async, mcast_async
● Service Advertising:

subscribe, unsubscribe
● Service Message Result:

return, forward

● Passively accepts incoming service messages
to resources (names) advertised by the service

publish

How To Develop A CloudI Service...

● A service name prefix is provided by the service
configuration, along with thread count and
process count

● All subscribe API calls specify a service name
suffix, so many destinations within a single
service share a common service name prefix

● All service messaging utilizes the complete
service name as a destination

● Service messages are automatically load-
balanced based on the sending service's config

Configuration

● Dynamic configuration is supported by the
CloudI Job API
● Accessible by JSON-RPC, HTTP, and services

● Access Control Lists (ACL) specify service
name destination prefixes that are explicitly
allowed or denied (affects sending)

● Service command line, restart characteristics,
threads, processes, ACLs, load-balancing, etc.,
is all defined as a Job to execute

Integration Considerations

● Databases, HTTP, ZeroMQ, etc., integration
occurs with separate Erlang CloudI services

● No data format or type is enforced for incoming
service messages
● Non-Erlang (i.e., external) service messages are

received as binary data

● ACL definitions can easily isolate a service
● Global data can be stored within a database
● External source code uses service messaging for

input and output (stdout and stderr get logged)

Migration To CloudI

1) Develop or modify source code to create a
service that handles input as service
messages and returns output

2) Add service configuration to create the Job
based on load-balancing, fault-tolerance,
isolation (ACL), and capacity requirements

3) Any source code that is a scalability bottleneck
can be gradually migrated to Erlang as a
separate service using the same service name

More Information

● Frequently Asked Questions
http://cloudi.org/faq.html

● Mailing List
http://groups.google.com/group/cloudi-questions

● CloudI Expert
mjtruog@gmail.com

http://cloudi.org/faq.html
http://groups.google.com/group/cloudi-questions

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

