
CloudI Integration

Framework

Chicago Erlang User Group – May 27, 2015

Speaker Bio

 Bruce Kissinger is an Architect with

 Impact Software LLC.

 Linkedin: https://www.linkedin.com/pub/bruce-kissinger/1/6b1/38

 Email: brucekissinger at gmail dot com

https://www.linkedin.com/pub/bruce-kissinger/1/6b1/38
https://www.linkedin.com/pub/bruce-kissinger/1/6b1/38
https://www.linkedin.com/pub/bruce-kissinger/1/6b1/38
https://www.linkedin.com/pub/bruce-kissinger/1/6b1/38

Agenda

 What is CloudI?

 How Do You Use It?

 Should You Use CloudI On Your Next Project?

What Is CloudI?

CloudI Definition

 CloudI is an open-source integration cloud that can be

deployed publicly or privately. It supports the development of

services that can be created in many different programming

languages and provides scalability and fault-tolerance.

Cloud Computing
 Essential Characteristics

 On Demand Self Service – provision computing resources without

requiring human intervention from the service provider

 Broad Network Access – capabilities are available over the network

and accessed using standard mechanisms

 Resource Pooling – can service multiple consumers using a multi-

tenant model with different resources dynamically assigned based on

demand

 Rapid Elasticity – rapid provisioning and scaling of resources

 Measured Service – resource usage can be monitored, controlled,

and reported

(Source: NIST Cloud Computing Definition, 2012)

CloudI Alignment
Cloud

Characteristic

CloudI Comments

On-Demand Self

Service

 Resources controlled via HTTP

request

Broad Network Access  Uses standard network protocols

Resource Pooling  Provided by underlying Erlang/OTP

capabilities

Rapid Elasticity  Provided by underlying Erlang/OTP

capabilities

Measured Service Partial Timeouts, queue depth, and other

parameters measured. Limited

built-in reporting capabilities

Service Oriented Architecture
 Definition – a set of principles and methodologies for designing

and developing software in the form of interoperable services.
(Source: Wikipedia)

 Service - discrete unit of business functionality that is made
available through a service contract. This contract specifies all
interactions between the service consumer and service provider.

 Common Service Characteristics

 Encapsulated – hide the service implementation details

 Different Levels of Granularity – coarse-grained services provide
greater level of functionality within a single service operation. Fine-
grained services perform a single specific task.

 Stateless – do not remember the last thing they did nor care what the
next is

 Location and Language Independent – accessible to any authorized
user on any platform, from any location

 Modular – services are self contained and autonomous

CloudI Alignment
Service

Characteristic

CloudI Comments

Encapsulated  Service contract defined using

configuration property list

Different Levels of

Granularity

 Coarse and fine grained services

supported equally

Stateless  Use of a RESTful API protocol helps

enforce statelessness

Location and

Language

Independent

 Services can run on specific or all cluster

nodes. Supports 10 programming

languages

Modular  Services are run in OS processes with an

Erlang thread monitoring them

CloudI Architecture

 A separate operating system

process is used to isolate each

non-Erlang service

 A separate Erlang process is

associated with each OS

process for monitoring and

control

 CloudI message bus provides

security and location

transparency

 CloudI leverages Erlang/OTP

internally

CloudI

Node 1

Cowboy

CloudI
Node 2

Service
2

Service
1

Request

CloudI Language Bindings

 Erlang

 Elixir

 C / C++

 Java

 JavaScript / Node.js

 Perl

 PHP

 Python

 Ruby

Built-In Services
 Filesystem – provides file read, write, notification functions

 HTTP Client – handles HTTP REST requests

 HTTP Servers – Cowboy and Elli

 OAuth – open authorization standard

 TCP – socket communication using TCP protocol

 UDP – socket communication using UDP protocol

 Timers – send messages with timer behavior

 Quorum – used to provide fault tolerance across distributed services

 Queue – persistent queue that survives restarts

 ZeroMQ – high-performance message library

 Elasticsearch – distributed full-text search server

 Map/Reduce service – fault tolerant, database agnostic

Built-In Database Services

 Database integration services

 MySQL

 PostgresSQL

 Memcached

 Riak

 Couchdb

 Cassandra DB and CQL

 Tokyo Tyrant

 Generic in-memory

CloudI API – Controlling the Cloud
 Access Control Lists

 Add or remove an ACL entry

 List ACL entries

 Service
 Add, Remove, or Restart a service

 List the subscriptions for a service instance

 List service configuration for a given service name

 List all services

 Nodes
 Set Configuration – can use Erlang or Amazon Web Services (AWS) node discovery

 Add or remove a node

 List all nodes, alive nodes, or dead nodes

 Logging
 Set logging file

 Set logging level

 Set logging format

 Set log redirection

 List configuration

 Code Path
 Add or remove a code path entry

 List code paths

CloudI API – Service Control

 Initialization / Termination – starts service and provides orderly shutdown

 Subscribe – subscribe to a service name pattern

 Unsubscribe – remove the subscription for a service name

 Send Sync – send a synchronous request to a service

 Send Async – send an asynchronous request to a service and get a
transaction id

 Forward - forward the service request to a different destination, possibly
with different parameters

 Mcast Async - send the service request asynchronously to all services
that have subscribed to a name pattern and gets a list of transaction ids

 Return - return a response to a service request

 Receive Async - receive an asynchronous service request's response

 Poll - accept service requests while blocking execution until either the
timeout value expires or the service terminates

How Do You Use CloudI?

Simple as 1, 2, 3

1. Add message subscriptions and handler templates to

existing code and compile

2. Create a configuration file

3. Register the service

Erlang – Export Functions

-module(book).

-behaviour(cloudi_service).

%% cloudi_service callbacks

-export([cloudi_service_init/4,

 cloudi_service_handle_request/11,

 cloudi_service_handle_info/3,

 cloudi_service_terminate/3]).

Erlang – Service Initialization

cloudi_service_init(_Args, _Prefix, _Timeout, Dispatcher) ->

 % subscribe to different request patterns

 cloudi_service:subscribe(Dispatcher, "newbooks/get"),

 cloudi_service:subscribe(Dispatcher, "popularbooks/get"),

 % return ok

 {ok, #state{}}.

Erlang – Handling Requests

cloudi_service_handle_request(Type, Name, Pattern, _RequestInfo, Request,

 _Timeout, _Priority, _TransId, _Pid, #state{} = State, Dispatcher) ->

 % based on the pattern and request, perform the appropriate action

 case Pattern of

 "/recommend/book/newbooks/get" ->

 ReplyRecord = find_new(Dispatcher); % find_new is a local function

 "/recommend/book/popularbooks/get" ->

 ReplyRecord = find_popular(Dispatcher); % find_popular is a local function

 _ ->

 ReplyRecord = cloudi_x_jsx:encode(["Invalid Request"])

 end,

 % send reply

 {reply, ReplyRecord, State}.

Erlang – Calling Another Service

…

Query = "select id, title from items",

Status = cloudi_service:send_sync(Dispatcher,

 "/db/mysql/book",

 <<>>,

 Query,

 undefined,

 undefined),

case Status of

 {ok , Result} ->

 Json_result = parse_items(Result);

 _ ->

 Json_result = cloudi_x_jsx:encode(<<"No data found">>)

 end,

Json_result.

Erlang – Service Configuration

[{internal,

 "/recommend/book/", % Service name

 book, % Erlang module

 [],

 immediate_closest,

 5000, 5000, 5000, undefined, undefined, 1, 5, 300,

 [{reload, true}, {queue_limit, 100}]

}]

Erlang – Registering the Service

CLOUDI_HTTP=http://localhost:6467/cloudi/api/erlang

Add the directory where the complied code is located

curl -X POST -d @path.conf

 $(CLOUDI_HTTP)/code_path_add

Add the service

curl -X POST -d @book.conf

 $(CLOUDI_HTTP)/services_add

Dashboard Examples

Java Service Example

 The general steps for adding a Java application to CloudI

are:

 Create a new class named Main that will initialize the

CloudI API

 Create a new class named Task that subscribes to various

CloudI requests and delegates the processing of these

requests to different Java methods

 Create a JAR file that contains the different Java classes

 Add the JAR file to the CloudI configuration

Java – Main Class

import org.cloudi.API;

public class Main {

 public static void main(String[] args) {

 try {

 final int thread_count = API.thread_count();

 assert (thread_count == 1);

 Task t = new Task(0);

 t.run();

 } catch (API.InvalidInputException e) {

 e.printStackTrace(API.err);

 }

 }

}

Java – Task Class – Part 1
import com.ericsson.otp.erlang.OtpErlangPid;

import java.io.UnsupportedEncodingException;

import org.cloudi.API;

public class Task {

 private API api;

 public Task(final int thread_index) {

 try {

 this.api = new API(thread_index);

 } catch (API.InvalidInputException e) {

 e.printStackTrace(API.err);

 System.exit(1);

 } catch (API.MessageDecodingException e) {j

 e.printStackTrace(API.err);

 System.exit(1);

 } catch (API.TerminateException e) {

 System.exit(1);

 }

 }

Java – Task Class – Part 2
 public void run() {

 try {

 // subscribe to different CloudI services

 this.api.subscribe("load_catalog/get", this, "startLoadCatalog");

 this.api.subscribe("generate_ratings/get", this, "startGenerateRatings");

 this.api.subscribe("load_predictions/get", this, "startLoadPredictions");

 // accept service requests

 this.api.poll();

 } catch (API.TerminateException e) {

 API.err.println("Book Utilities TerminateException caught " + e.getMessage());

 } catch (Exception e) {

 API.err.println("Book Utilities Exception caught " + e.getMessage());

 }

 }

Java – Calling Another Service

…

byte[] service_request =

 ("SELECT max(quantity) FROM items").getBytes();

org.cloudi.API.Response response =

 api.send_sync("/db/mysql/book", service_request);

…

Java – Service Configuration

[

 {external,

 "/book/utility/", % service name

 "/opt/java/jdk1.7.0_05/bin/java",

 "-cp /usr/local/lib/cloudi-1.5.0/api/java/ "

 "-ea:org.cloudi... -jar

/home/bruce/Projects/BookUtilities/deploy/BookUtilities.jar",

 [],

 lazy_closest, tcp, default,

 50000, 50000, 50000, undefined, undefined, 1, 1, 5,

300, []

 }

]

Simple as 1, 2, 3, 4, 5, 6, 7

1. Design the message API

2. Design the message data structures – especially if using

mixed languages

3. Add message subscriptions and handler templates to

existing code and compile

4. Create a configuration file

5. Register the service

6. Repeat Step 5 for all nodes in the cluster

7. Measure performance and fine tune the service

configuration

Design the Message API – Part 1

Design the Message API – Part 2
Use Case Method URL

Browse New Books GET /book/newbooks

Browse Popular Books GET /book/popularbooks

Browse Recommended Books GET /book/recommendedbooks?user=X

View Book Details GET /book/allbooks?id=X

Download Book GET /book/download?id=X&user=Y

Create New User GET /book/newuser

Get Unrated Books GET /book/unrated?user=X

Rank Downloaded Book POST /book/download/

Add Book to Collection POST /book/allbooks/

Should You Use CloudI On Your

Next Project?

Strongly Consider

 If your project needs cloud-type characteristics

 On Demand Self Service

 Broad Network Access

 Resource Pooling

 Rapid Elasticity

 Project deployed to a internal or external cloud

 CloudI has strong support for Amazon cloud

 If your project uses a service-oriented architecture style

 Set of principles and methodologies for designing and developing

software in the form of interoperable services

 If you can leverage the built-in services

 If you are using a mix of languages

 If you need Erlang-style fault tolerance with these languages

Investigate More

 If you are develop completely in Erlang/OTP, CloudI can still

offer some benefits including:

 Use of CloudI built-in services

 A service container abstraction for simpler Service Oriented

Architecture development.

 Finer control of service start order and runtime characteristics

 See http://www.cloudi.org/faq.html#4_Erlang for list of other

potential benefits

http://www.cloudi.org/faq.html#4_Erlang
http://www.cloudi.org/faq.html#4_Erlang
http://www.cloudi.org/faq.html#4_Erlang

Probably Not For You

 If you do not use a service-oriented architecture style

 If you need very robust service or message security

 CloudI does not implement role-based security for calling

services

 CloudI does not use secure encrypted messages

 If you need very large scale clusters

 CloudI relies on Erlang/OTP for cluster management &

communication

 Practical limit is < 100 nodes

 If your project is deployed on Windows-based operating

systems

 In theory this is possible, but installation might be challenging

Additional References
 Project site – http://cloudi.org

 Mailing list - http://groups.google.com/group/cloudi-questions

 CloudI Tutorial - http://www.impactsoftwarelabs.com/cloudi

Questions?

