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Cloud computing you can own!

 Cloudl is BSD licensed

* Cloudl is an interface for developers to provide
fine-grained dynamic fault-tolerance across all
programming languages

* Non-Erlang programming languages gain
fault-tolerance without virtualization (Real!)

» Self-Contained to provide implicit security If
deployed privately (everything is open-source)
— NoO encryption Is completely secure
- An air gap network is secure



Why does this matter?

» All souce code contains bugs!
(typically measured as defects per KSLOC [1])
— Fault-Tolerance matters

 Fault-Tolerance iIs the main benefit that
cloud computing should provide

 Unencumbered by a CLA (Contributor License
Agreement), board members, governance,
committees or any other impediments to usage

[1] http://www.infog.com/news/2012/03/Defects-Open-Source-Commercial


http://www.infoq.com/news/2012/03/Defects-Open-Source-Commercial

Part 1

Cloudl Is
Dynamic Fault-Tolerance
for Erlang source code



CPG - The Heart of Cloudl

e “Cloudl Process Groups” are master-less

« All data iIs retrieved from the local node but
updates are shared with remote nodes

 Based on pg2, includes many improvements
(unlike pg2, it works with the via tuple syntax)

* Cloudl is AP-type from the CAP theorem
(Get Consistency from a database interface!)

 No minimum number of nodes required for
CPG to function error-free



CPG - Process Organization

Scope == atom()
locally registered CPG
Erlang process

GroupName == string()
Group of Erlang processes
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GroupName is called a “Service Name Pattern” within Cloudl




CPG - Better Process Pooling

* Poolboy changes internal state to access a pool and queue
internally, CPG doesn't
- CPG is for Flow-Based Programming (FBP)

e Doesn't gueue so that queuing can be done with separate
granular fault-tolerance (i.e., a Cloud! Service)

« CPG [1] is a Conflict-free Replicated Data Type (CRDT)
— state-based (Convergent) with node monitoring (startup)
— operation-based (Commutative) with updates (join/leave)
— provides Strong Eventual Consistency (SEC) [2]

« Handles higher throughput (CPG state caching)
— No bottleneck on process lookup

[1] https://github.com/okeuday/cpg/
[2] http://dl.acm.org/citation.cfm?1d=2050642


https://github.com/okeuday/cpg/
http://dl.acm.org/citation.cfm?id=2050642

CPG - GroupName patterns?

“*must consume 1 or more characters
“**" 15 forbidden

“/service/name” matches the patterns:
“Iservice/*”, “[*name”, “/*[*", “[*”
“/service/nam*”, etc. [1]

A “Service Name” Is the GroupName string
used for the CPG process lookup (the “Service
Name Pattern” is what is stored inside CPG)

[1] http://cloudi.org/fag.ntml#4 _NamePattern


http://cloudi.org/faq.html#4_NamePattern

What is CloudI?

CloudlI provides a service abstraction (running
long-lived processes) for many reasons:

The service abstraction enforces fault-tolerance
constraints for all services, in the same way:

- Timeout, automatically decremented

- MaxR/MaxT, same as a supervisor

Encapsulates CPG usage for service name lookups
to avoid implementation errors
— Adds ACLs, service name match on sends

* A service iIs more dynamic than a gen_server
— refers to more than 1 service process normally
— each service name pattern has redundancy



Cloudl Scalability Highlights

count_process_dynamic
— Rate-based service process counts

monkey latency/monkey chaos
- Simulated failures (~ Netflix's SimianArmy)

gueue_Ilimit/priority _default
- Services can limit their incoming queue size
— All service requests have a priority

(defaults to 0, -128 high, 127 low)

count_process/count_thread (service config)
— Service instances set their initial concurrency
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Cloudl Memory Consumption

* request pid_uses/info_pid_uses
— Control the frequency of heap GC

* Avoids any difficulties with GC latency not
keeping up with binary reference death

* Only uses a single Erlang pid (Dispatcher) until
the request_pid or info_pid Is required
(unless duo_mode is enabled) [1]

* queue_limit limits the queued service requests
- Erlang pid messages are put into the heap

[1] http://cloudi.org/api.ntml#2_services add
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http://cloudi.org/api.html#2_services_add

How do you call a CloudI Service?

cloudi module (subset of cloudi_service module)
- sending from any Erlang pid

cloudi_service module
- sending from within a CloudI Service

Use the cloudi_service behavior when you need
to receive service requests (an Erlang service Is
also called an “internal” service) [1]

Each Service request Is sent using:
ServiceName, Requestinfo, Request, Timeout

[1] http://cloudi.org/api.ntml#1_Intro
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http://cloudi.org/api.html#1_Intro

Calling a Cloudl Service

service processes

|  send_sync“1” |, >Gubscribe “1”

subscribe “D«
Gubscribe 1"

Transld == Transaction Id (UUIDv1
( ) Gubscribe “:D«

(mcast_async == Publish, but a response could occur)

‘ send_async “1”

|
| Transld returned

‘ recv_async Transld

mcast async “1” | :
‘ _asy | List of Translds returned

Service Name lookup is blocking,

SO a successful return means a destination does exist
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Calling a CloudI Service (cont.)

» Services are always replicated to provide fault-
tolerance, no migration of state is required

* For handling N entities with services, It is best to
use M service processes where M <N
(we want control of the system's scalabllity)

* A service request reply of “<<>>" (an empty
binary, I.e., nothing) within the service is the
same as the service request sender getting
“{error, timeout}”

 |nversion of Control (1oC) that iIs more dynamic
than OTP behaviors
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Why Is CloudlI beneficial in
Erlang source code?

Dynamic fault-tolerance for many Erlang
orocesses with one Service Name instead of
neing limited by Erlang's one-to-one naming of
Erlang processes

Handles memory consumption issues that are
typical with long-lived Erlang processes

Features to enforce fault-tolerance constraints
and iImprove scalabllity of the service source
code to simplify Erlang development

Transaction Id is unique across all nodes
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Using other nodes?

 CPG handles all the local and remote service
name lookups without contacting other nodes

* hidden node connections to avoid a fully
connected distributed Erlang network [1]

» automatic discovery of Erlang nodes with LAN
multicast or with EC2 AWS API usage

» A service's destination refresh method [2]
determines what destinations will be used for
sending service requests (its view of the network)

[1] http://cloudi.org/api.ntml#2_nodes_set
[2] http://cloudi.org/api.ntml#1_Intro_dest
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http://cloudi.org/api.html#2_nodes_set
http://cloudi.org/api.html#1_Intro_dest

Result of using Cloud|

 Encapsulate source code with stricter fault-
tolerance constraints (doesn't persist errors)

 Easier to reuse source code
(configuration driven (fail-fast)):

— CIOoUC
— CIOoUC

|_service_queue - persistent requests
|_service_guorum - consistency

— cloudi_service_filesystem - file cache

— CIOoUC

— CIOoUuC

|_service_http _cowboy (and elli)
|_service _db pgsgl (and other dbs)

o Simpler scalability
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Part 2

Cloudl Is
Dynamic Fault-Tolerance
for non-Erlang source code
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Erlang Integration Comparison

* port drivers and NIFs
— most efficient
— sabotages the Erlang VM's fault-tolerance
(no source code Is perfect)

e cnode - only a single Erlang VM connection
— creates a bhottleneck

* port - only a single pair of UNIX pipes
- |ess atomic send throughput than sockets

e external Cloudl service
— a socket per configured thread
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Why do we care about
non-Erlang fault-tolerance?

 Why not make a bash script that restarts an
OS process based on MaxR and MaxT?
— downtime during a restart Is significant
- worse than 99.999% reliability
(5.256 minutes per year)
- we want 99.9999999% reliability

* To extend the benefits of Erlang into
non-Erlang source code

» To scale unscalable source code
(Erlang source code can handle the scaling)
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Why make an
external Cloudl service?

* Not everyone wants to program in Erlang
- Make It a CloudlI service to isolate their
source code with fault-tolerance constraints
— Scale the system from the Erlang-side
— Flexiblility for system growth, moving to
other languages or dependencies

« Usually development is feature-driven (often
without clear requirements), scalability Is an
after-thought, fault-tolerance is impossible

* Cloudl's external service integration provides
practical benefits with minimal effort
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Where can | find more information?

* Website
http://cloudi.org

* Main repository
https://github.com/CloudI/Cloudl
- examples/ - Ways of using Cloud|
— src/tests/ - Integration/Usage test examples

» Erlang-only Cloudl usage with rebar
nttps://github.com/Cloudl|/cloudi_core

» Larger integration example
nttps://github.com/okeuday/sillymud
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http://cloudi.org/
https://github.com/CloudI/CloudI
https://github.com/CloudI/cloudi_core
https://github.com/okeuday/sillymud
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