Real Cloud Computing
Erlang and Elixir User Group
Seattle Washington, June 18th 2014

mjtruog@gmail.com


mailto:mjtruog@gmail.com

Cloud computing you can own!

 Cloudl is BSD licensed

* Cloudl is an interface for developers to provide
fine-grained dynamic fault-tolerance across all
programming languages

* Non-Erlang programming languages gain
fault-tolerance without virtualization (Real!)

» Self-Contained to provide implicit security If
deployed privately (everything is open-source)
— NoO encryption Is completely secure
- An air gap network is secure



Why does this matter?

» All souce code contains bugs!
(typically measured as defects per KSLOC [1])
— Fault-Tolerance matters

 Fault-Tolerance iIs the main benefit that
cloud computing should provide

 Unencumbered by a CLA (Contributor License
Agreement), board members, governance,
committees or any other impediments to usage

[1] http://www.infog.com/news/2012/03/Defects-Open-Source-Commercial


http://www.infoq.com/news/2012/03/Defects-Open-Source-Commercial

Part 1

Cloudl Is
Dynamic Fault-Tolerance
for Erlang source code



CPG - The Heart of Cloudl

e “Cloudl Process Groups” are master-less

« All data iIs retrieved from the local node but
updates are shared with remote nodes

 Based on pg2, includes many improvements
(unlike pg2, it works with the via tuple syntax)

* Cloudl is AP-type from the CAP theorem
(Get Consistency from a database interface!)

 No minimum number of nodes required for
CPG to function error-free



CPG - Process Organization

Scope == atom()
locally registered CPG
Erlang process

GroupName == string()
Group of Erlang processes

PE® )2 O®

Gib

GroupName is called a “Service Name Pattern” within Cloudl




CPG - Better Process Pooling

* Poolboy changes internal state to access a pool and queue
internally, CPG doesn't
- CPG is for Flow-Based Programming (FBP)

e Doesn't gueue so that queuing can be done with separate
granular fault-tolerance (i.e., a Cloud! Service)

« CPG [1] is a Conflict-free Replicated Data Type (CRDT)
— state-based (Convergent) with node monitoring (startup)
— operation-based (Commutative) with updates (join/leave)
— provides Strong Eventual Consistency (SEC) [2]

« Handles higher throughput (CPG state caching)
— No bottleneck on process lookup

[1] https://github.com/okeuday/cpg/
[2] http://dl.acm.org/citation.cfm?1d=2050642


https://github.com/okeuday/cpg/
http://dl.acm.org/citation.cfm?id=2050642

CPG - GroupName patterns?

“*must consume 1 or more characters
“**" 15 forbidden

“/service/name” matches the patterns:
“Iservice/*”, “[*name”, “/*[*", “[*”
“/service/nam*”, etc. [1]

A “Service Name” Is the GroupName string
used for the CPG process lookup (the “Service
Name Pattern” is what is stored inside CPG)

[1] http://cloudi.org/fag.ntml#4 _NamePattern


http://cloudi.org/faq.html#4_NamePattern

What is CloudI?

CloudlI provides a service abstraction (running
long-lived processes) for many reasons:

The service abstraction enforces fault-tolerance
constraints for all services, in the same way:

- Timeout, automatically decremented

- MaxR/MaxT, same as a supervisor

Encapsulates CPG usage for service name lookups
to avoid implementation errors
— Adds ACLs, service name match on sends

* A service iIs more dynamic than a gen_server
— refers to more than 1 service process normally
— each service name pattern has redundancy



Cloudl Scalability Highlights

count_process_dynamic
— Rate-based service process counts

monkey latency/monkey chaos
- Simulated failures (~ Netflix's SimianArmy)

gueue_Ilimit/priority _default
- Services can limit their incoming queue size
— All service requests have a priority

(defaults to 0, -128 high, 127 low)

count_process/count_thread (service config)
— Service instances set their initial concurrency

10



Cloudl Memory Consumption

* request pid_uses/info_pid_uses
— Control the frequency of heap GC

* Avoids any difficulties with GC latency not
keeping up with binary reference death

* Only uses a single Erlang pid (Dispatcher) until
the request_pid or info_pid Is required
(unless duo_mode is enabled) [1]

* queue_limit limits the queued service requests
- Erlang pid messages are put into the heap

[1] http://cloudi.org/api.ntml#2_services add

11


http://cloudi.org/api.html#2_services_add

How do you call a CloudI Service?

cloudi module (subset of cloudi_service module)
- sending from any Erlang pid

cloudi_service module
- sending from within a CloudI Service

Use the cloudi_service behavior when you need
to receive service requests (an Erlang service Is
also called an “internal” service) [1]

Each Service request Is sent using:
ServiceName, Requestinfo, Request, Timeout

[1] http://cloudi.org/api.ntml#1_Intro

12


http://cloudi.org/api.html#1_Intro

Calling a Cloudl Service

service processes

|  send_sync“1” |, >Gubscribe “1”

subscribe “D«
Gubscribe 1"

Transld == Transaction Id (UUIDv1
( ) Gubscribe “:D«

(mcast_async == Publish, but a response could occur)

‘ send_async “1”

|
| Transld returned

‘ recv_async Transld

mcast async “1” | :
‘ _asy | List of Translds returned

Service Name lookup is blocking,

SO a successful return means a destination does exist
13



Calling a CloudI Service (cont.)

» Services are always replicated to provide fault-
tolerance, no migration of state is required

* For handling N entities with services, It is best to
use M service processes where M <N
(we want control of the system's scalabllity)

* A service request reply of “<<>>" (an empty
binary, I.e., nothing) within the service is the
same as the service request sender getting
“{error, timeout}”

 |nversion of Control (1oC) that iIs more dynamic
than OTP behaviors

14



Why Is CloudlI beneficial in
Erlang source code?

Dynamic fault-tolerance for many Erlang
orocesses with one Service Name instead of
neing limited by Erlang's one-to-one naming of
Erlang processes

Handles memory consumption issues that are
typical with long-lived Erlang processes

Features to enforce fault-tolerance constraints
and iImprove scalabllity of the service source
code to simplify Erlang development

Transaction Id is unique across all nodes

15



Using other nodes?

 CPG handles all the local and remote service
name lookups without contacting other nodes

* hidden node connections to avoid a fully
connected distributed Erlang network [1]

» automatic discovery of Erlang nodes with LAN
multicast or with EC2 AWS API usage

» A service's destination refresh method [2]
determines what destinations will be used for
sending service requests (its view of the network)

[1] http://cloudi.org/api.ntml#2_nodes_set
[2] http://cloudi.org/api.ntml#1_Intro_dest

16


http://cloudi.org/api.html#2_nodes_set
http://cloudi.org/api.html#1_Intro_dest

Result of using Cloud|

 Encapsulate source code with stricter fault-
tolerance constraints (doesn't persist errors)

 Easier to reuse source code
(configuration driven (fail-fast)):

— CIOoUC
— CIOoUC

|_service_queue - persistent requests
|_service_guorum - consistency

— cloudi_service_filesystem - file cache

— CIOoUC

— CIOoUuC

|_service_http _cowboy (and elli)
|_service _db pgsgl (and other dbs)

o Simpler scalability

17



Part 2

Cloudl Is
Dynamic Fault-Tolerance
for non-Erlang source code

18



Erlang Integration Comparison

* port drivers and NIFs
— most efficient
— sabotages the Erlang VM's fault-tolerance
(no source code Is perfect)

e cnode - only a single Erlang VM connection
— creates a bhottleneck

* port - only a single pair of UNIX pipes
- |ess atomic send throughput than sockets

e external Cloudl service
— a socket per configured thread

19



Why do we care about
non-Erlang fault-tolerance?

 Why not make a bash script that restarts an
OS process based on MaxR and MaxT?
— downtime during a restart Is significant
- worse than 99.999% reliability
(5.256 minutes per year)
- we want 99.9999999% reliability

* To extend the benefits of Erlang into
non-Erlang source code

» To scale unscalable source code
(Erlang source code can handle the scaling)

20




Why make an
external Cloudl service?

* Not everyone wants to program in Erlang
- Make It a CloudlI service to isolate their
source code with fault-tolerance constraints
— Scale the system from the Erlang-side
— Flexiblility for system growth, moving to
other languages or dependencies

« Usually development is feature-driven (often
without clear requirements), scalability Is an
after-thought, fault-tolerance is impossible

* Cloudl's external service integration provides
practical benefits with minimal effort

21




Where can | find more information?

* Website
http://cloudi.org

* Main repository
https://github.com/CloudI/Cloudl
- examples/ - Ways of using Cloud|
— src/tests/ - Integration/Usage test examples

» Erlang-only Cloudl usage with rebar
nttps://github.com/Cloudl|/cloudi_core

» Larger integration example
nttps://github.com/okeuday/sillymud

22


http://cloudi.org/
https://github.com/CloudI/CloudI
https://github.com/CloudI/cloudi_core
https://github.com/okeuday/sillymud

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

