
Real Cloud Computing
Erlang and Elixir User Group

Seattle Washington, June 18th 2014

mjtruog@gmail.com

mailto:mjtruog@gmail.com

 2

Cloud computing you can own!

● CloudI is BSD licensed
● CloudI is an interface for developers to provide

fine-grained dynamic fault-tolerance across all
programming languages

● Non-Erlang programming languages gain
fault-tolerance without virtualization (Real!)

● Self-Contained to provide implicit security if
deployed privately (everything is open-source)
→ No encryption is completely secure
→ An air gap network is secure

 3

Why does this matter?

● All souce code contains bugs!
(typically measured as defects per KSLOC [1])
→ Fault-Tolerance matters

● Fault-Tolerance is the main benefit that
cloud computing should provide

● Unencumbered by a CLA (Contributor License
Agreement), board members, governance,
committees or any other impediments to usage

[1] http://www.infoq.com/news/2012/03/Defects-Open-Source-Commercial

http://www.infoq.com/news/2012/03/Defects-Open-Source-Commercial

 4

Part 1

CloudI is
Dynamic Fault-Tolerance
for Erlang source code

 5

CPG - The Heart of CloudI

● “CloudI Process Groups” are master-less
● All data is retrieved from the local node but

updates are shared with remote nodes
● Based on pg2, includes many improvements

(unlike pg2, it works with the via tuple syntax)
● CloudI is AP-type from the CAP theorem

(Get Consistency from a database interface!)
● No minimum number of nodes required for

CPG to function error-free

 6

CPG - Process Organization

Scope == atom()
locally registered CPG
Erlang process

GroupName == string()
Group of Erlang processes

“1”

“3”

“2”P P P

P P

P

PP

GroupName is called a “Service Name Pattern” within CloudI

 7

CPG - Better Process Pooling

● Poolboy changes internal state to access a pool and queue
internally, CPG doesn't
→ CPG is for Flow-Based Programming (FBP)

● Doesn't queue so that queuing can be done with separate
granular fault-tolerance (i.e., a CloudI Service)

● CPG [1] is a Conflict-free Replicated Data Type (CRDT)
→ state-based (Convergent) with node monitoring (startup)
→ operation-based (Commutative) with updates (join/leave)
→ provides Strong Eventual Consistency (SEC) [2]

● Handles higher throughput (CPG state caching)
→ No bottleneck on process lookup

[1] https://github.com/okeuday/cpg/
[2] http://dl.acm.org/citation.cfm?id=2050642

https://github.com/okeuday/cpg/
http://dl.acm.org/citation.cfm?id=2050642

 8

CPG - GroupName patterns?

● “*” must consume 1 or more characters
● “**” is forbidden
● “/service/name” matches the patterns:

“/service/*”, “/*/name”, “/*/*”, “/*”,
“/service/nam*”, etc. [1]

● A “Service Name” is the GroupName string
used for the CPG process lookup (the “Service
Name Pattern” is what is stored inside CPG)

[1] http://cloudi.org/faq.html#4_NamePattern

http://cloudi.org/faq.html#4_NamePattern

 9

What is CloudI?

● The service abstraction enforces fault-tolerance
constraints for all services, in the same way:
→ Timeout, automatically decremented
→ MaxR/MaxT, same as a supervisor

● Encapsulates CPG usage for service name lookups
to avoid implementation errors
→ Adds ACLs, service name match on sends

● A service is more dynamic than a gen_server
→ refers to more than 1 service process normally
→ each service name pattern has redundancy

CloudI provides a service abstraction (running
long-lived processes) for many reasons:

 10

CloudI Scalability Highlights

● count_process_dynamic
→ Rate-based service process counts

● monkey_latency/monkey_chaos
→ Simulated failures (~ Netflix's SimianArmy)

● queue_limit/priority_default
→ Services can limit their incoming queue size
→ All service requests have a priority
 (defaults to 0, -128 high, 127 low)

● count_process/count_thread (service config)
→ Service instances set their initial concurrency

 11

CloudI Memory Consumption

● request_pid_uses/info_pid_uses
→ Control the frequency of heap GC

● Avoids any difficulties with GC latency not
keeping up with binary reference death

● Only uses a single Erlang pid (Dispatcher) until
the request_pid or info_pid is required
(unless duo_mode is enabled) [1]

● queue_limit limits the queued service requests
→ Erlang pid messages are put into the heap

[1] http://cloudi.org/api.html#2_services_add

http://cloudi.org/api.html#2_services_add

 12

How do you call a CloudI Service?

● cloudi module (subset of cloudi_service module)
→ sending from any Erlang pid

● cloudi_service module
→ sending from within a CloudI Service

● Use the cloudi_service behavior when you need
to receive service requests (an Erlang service is
also called an “internal” service) [1]

● Each Service request is sent using:
ServiceName, RequestInfo, Request, Timeout

[1] http://cloudi.org/api.html#1_Intro

http://cloudi.org/api.html#1_Intro

 13

Calling a CloudI Service

subscribe “1”

subscribe “1”

send_sync “1”

mcast_async “1”

subscribe “1”

subscribe “1”

recv_async TransId

TransId returnedsend_async “1”

List of TransIds returned

(mcast_async == Publish, but a response could occur)

Service Name lookup is blocking,
so a successful return means a destination does exist

TransId == Transaction Id (UUIDv1)

service processes

 14

Calling a CloudI Service (cont.)

● Services are always replicated to provide fault-
tolerance, no migration of state is required

● For handling N entities with services, it is best to
use M service processes where M < N
(we want control of the system's scalability)

● A service request reply of “<<>>” (an empty
binary, i.e., nothing) within the service is the
same as the service request sender getting
“{error, timeout}”

● Inversion of Control (IoC) that is more dynamic
than OTP behaviors

 15

Why is CloudI beneficial in
Erlang source code?

● Dynamic fault-tolerance for many Erlang
processes with one Service Name instead of
being limited by Erlang's one-to-one naming of
Erlang processes

● Handles memory consumption issues that are
typical with long-lived Erlang processes

● Features to enforce fault-tolerance constraints
and improve scalability of the service source
code to simplify Erlang development

● Transaction Id is unique across all nodes

 16

Using other nodes?

● CPG handles all the local and remote service
name lookups without contacting other nodes

● hidden node connections to avoid a fully
connected distributed Erlang network [1]

● automatic discovery of Erlang nodes with LAN
multicast or with EC2 AWS API usage

● A service's destination refresh method [2]
determines what destinations will be used for
sending service requests (its view of the network)

[1] http://cloudi.org/api.html#2_nodes_set
[2] http://cloudi.org/api.html#1_Intro_dest

http://cloudi.org/api.html#2_nodes_set
http://cloudi.org/api.html#1_Intro_dest

 17

Result of using CloudI

● Encapsulate source code with stricter fault-
tolerance constraints (doesn't persist errors)

● Easier to reuse source code
(configuration driven (fail-fast)):
→ cloudi_service_queue - persistent requests
→ cloudi_service_quorum - consistency
→ cloudi_service_filesystem - file cache
→ cloudi_service_http_cowboy (and elli)
→ cloudi_service_db_pgsql (and other dbs)

● Simpler scalability

 18

Part 2

CloudI is
Dynamic Fault-Tolerance

for non-Erlang source code

 19

Erlang Integration Comparison

● port drivers and NIFs
→ most efficient
→ sabotages the Erlang VM's fault-tolerance
 (no source code is perfect)

● cnode - only a single Erlang VM connection
→ creates a bottleneck

● port - only a single pair of UNIX pipes
→ less atomic send throughput than sockets

● external CloudI service
→ a socket per configured thread

 20

Why do we care about
non-Erlang fault-tolerance?

● Why not make a bash script that restarts an
OS process based on MaxR and MaxT?
→ downtime during a restart is significant
→ worse than 99.999% reliability
 (5.256 minutes per year)
→ we want 99.9999999% reliability

● To extend the benefits of Erlang into
non-Erlang source code

● To scale unscalable source code
(Erlang source code can handle the scaling)

 21

Why make an
external CloudI service?

● Not everyone wants to program in Erlang
→ Make it a CloudI service to isolate their
 source code with fault-tolerance constraints
→ Scale the system from the Erlang-side
→ Flexibility for system growth, moving to
 other languages or dependencies

● Usually development is feature-driven (often
without clear requirements), scalability is an
after-thought, fault-tolerance is impossible

● CloudI's external service integration provides
practical benefits with minimal effort

 22

Where can I find more information?

● Website
http://cloudi.org

● Main repository
https://github.com/CloudI/CloudI
→ examples/ - Ways of using CloudI
→ src/tests/ - Integration/Usage test examples

● Erlang-only CloudI usage with rebar
https://github.com/CloudI/cloudi_core

● Larger integration example
https://github.com/okeuday/sillymud

http://cloudi.org/
https://github.com/CloudI/CloudI
https://github.com/CloudI/cloudi_core
https://github.com/okeuday/sillymud

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

